TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI EM REDUÇÃO LSZ
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Em teoria quântica de campos, a fórmula da redução de LSZ é um método para calcular elementos da matriz-S (as amplitudes de espalhamento) das funções de correlação ordenadas no tempo de uma teoria quântica de campos. É um passo da sequência que começa na lagrangeana de alguma teoria quântica de campos, e leva à previsão de quantidades mensuráveis. Seu nome é uma homenagem a três físicos alemães, Harry Lehmann, Kurt Symanzik e Wolfhart Zimmermann.[1][2][3]
Embora a fórmula da redução de LSZ não sirva para partículas compostas, partículas sem massa, e sólitons topológicos, ela pode ser generalizada para cobrir partículas compostas, pelo uso de campos compostos que frequentemente são não-locais. Além disso, o método (ou suas variantes) tornou-se igualmente frutífero em outros campos da física teórica. Por exemplo, em física estatística eles podem ser usados para obter uma formulação particularmente geral do teorema da flutuação-dissipação.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em teoria quântica de campos, a fórmula da redução de LSZ é um método para calcular elementos da matriz-S (as amplitudes de espalhamento) das funções de correlação ordenadas no tempo de uma teoria quântica de campos. É um passo da sequência que começa na lagrangeana de alguma teoria quântica de campos, e leva à previsão de quantidades mensuráveis. Seu nome é uma homenagem a três físicos alemães, Harry Lehmann, Kurt Symanzik e Wolfhart Zimmermann.[1][2][3]
Embora a fórmula da redução de LSZ não sirva para partículas compostas, partículas sem massa, e sólitons topológicos, ela pode ser generalizada para cobrir partículas compostas, pelo uso de campos compostos que frequentemente são não-locais. Além disso, o método (ou suas variantes) tornou-se igualmente frutífero em outros campos da física teórica. Por exemplo, em física estatística eles podem ser usados para obter uma formulação particularmente geral do teorema da flutuação-dissipação.
Campos Antecessor e Posterior
Elementos da matriz S são pontos de transições entre estados Antecessor e Posterior. Um estado Antecessor descreve o estado de um sistema de partículas que, em um momento no passado, antes de interagir, se movendo livremente com momento definido , e, convencionalmente, um estado Posterior descreve o estado de um sistema de partículas que, em um momento posterior, depois de interação, se movendo livremente com momento definido .[1][2][3]
Os estados Antecessor e Posterior são estados numa Representação de Heisenberg , não devemos descrever as partículas em um determinado momento, mas sim um sistema de partículas em evolução, de modo que o elemento da matriz S descrevem :
é a Amplitude de probabilidade a um ajuste no sistema de partículas que foram preparados com momento definido a interagir e ser medidos mais tarde, como um novo conjunto de partículas com momento .
A maneira mais fácil de construir estados Antecessor e Posterior é buscar operadores de campo apropriados que forneçam os operadores de criação e aniquilação. Esses campos são chamados respectivamente de campo Antecessor e Posterior.
Apenas para fixar idéias, suponha que lidar com um campo de Klein-Gordon, que interage de alguma forma que não nos diz respeito:
- X
Elementos da matriz S são pontos de transições entre estados Antecessor e Posterior. Um estado Antecessor descreve o estado de um sistema de partículas que, em um momento no passado, antes de interagir, se movendo livremente com momento definido , e, convencionalmente, um estado Posterior descreve o estado de um sistema de partículas que, em um momento posterior, depois de interação, se movendo livremente com momento definido .[1][2][3]
Os estados Antecessor e Posterior são estados numa Representação de Heisenberg , não devemos descrever as partículas em um determinado momento, mas sim um sistema de partículas em evolução, de modo que o elemento da matriz S descrevem :
é a Amplitude de probabilidade a um ajuste no sistema de partículas que foram preparados com momento definido a interagir e ser medidos mais tarde, como um novo conjunto de partículas com momento .
A maneira mais fácil de construir estados Antecessor e Posterior é buscar operadores de campo apropriados que forneçam os operadores de criação e aniquilação. Esses campos são chamados respectivamente de campo Antecessor e Posterior.
Apenas para fixar idéias, suponha que lidar com um campo de Klein-Gordon, que interage de alguma forma que não nos diz respeito:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
podem conter uma auto interação ou interação com outros campos, como uma interação Yukawa . Deste Lagrange, usando equações de Euler-Lagrange, a equação do movimento segue:
- X
podem conter uma auto interação ou interação com outros campos, como uma interação Yukawa . Deste Lagrange, usando equações de Euler-Lagrange, a equação do movimento segue:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde, se não contém acoplamentos derivados:
- X
Onde, se não contém acoplamentos derivados:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Podemos esperar que o campo Antecessor, se assemelhe ao comportamento assintótico do campo livre como , fazendo a suposição de que na interação posterior descrito pelo atual é seja desprezível, como partículas estão longe uma da outra. Esta hipótese é chamada de hipótese adiabático. No entanto auto interação nunca desaparece e, além de muitos outros efeitos, faz resulte na diferença entre a massa de Lagrange e a massa física do bóson . Este fato deve ser levado em consideração por reescrever a equação de movimento da seguinte forma:
- X
Podemos esperar que o campo Antecessor, se assemelhe ao comportamento assintótico do campo livre como , fazendo a suposição de que na interação posterior descrito pelo atual é seja desprezível, como partículas estão longe uma da outra. Esta hipótese é chamada de hipótese adiabático. No entanto auto interação nunca desaparece e, além de muitos outros efeitos, faz resulte na diferença entre a massa de Lagrange e a massa física do bóson . Este fato deve ser levado em consideração por reescrever a equação de movimento da seguinte forma:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Esta equação pode ser resolvida utilizando formalmente a função retardada de Green's para o operador Klein-Gordon :
- X
Esta equação pode ser resolvida utilizando formalmente a função retardada de Green's para o operador Klein-Gordon :
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
o que nos permite dividir a interação do comportamento assintótico. A solução é:
- X
o que nos permite dividir a interação do comportamento assintótico. A solução é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O fator é um fator normalizado que virá mais tarde à mão, o campo é uma solução da equação homogénea associada com a equação do movimento:
- X
O fator é um fator normalizado que virá mais tarde à mão, o campo é uma solução da equação homogénea associada com a equação do movimento:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e, portanto, é um campo livre que descreve uma onda imperturbável de entrada, enquanto que o último termo da solução dá a perturbação da onda devido à interação.
O campo é de fato o campo Antecessor que buscamos, como ele descrevemos o comportamento assintótico do campo, interagindo como , embora esta declaração se resumirá mais precisa depois. É um campo escalar livre para ondas planas expandirem-se:
- X
e, portanto, é um campo livre que descreve uma onda imperturbável de entrada, enquanto que o último termo da solução dá a perturbação da onda devido à interação.
O campo é de fato o campo Antecessor que buscamos, como ele descrevemos o comportamento assintótico do campo, interagindo como , embora esta declaração se resumirá mais precisa depois. É um campo escalar livre para ondas planas expandirem-se:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde:
- X
onde:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A função inversa para os coeficientes em termos de campo podem ser facilmente obtidas e apresentadas de forma formal:
- X
A função inversa para os coeficientes em termos de campo podem ser facilmente obtidas e apresentadas de forma formal:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde:
- X
Onde:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e podem ser usados para construir o estado Antecessor de maneira usual:
- X
e podem ser usados para construir o estado Antecessor de maneira usual:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A relação entre o campo interagindo e o campo Antecessor não é muito simples de usar, e na presença anterior da função Green's nos deixa descrever algo como:
- X
A relação entre o campo interagindo e o campo Antecessor não é muito simples de usar, e na presença anterior da função Green's nos deixa descrever algo como:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
implicitamente a suposição se faz de que todas as interações tornam-se insignificantes quando as partículas estão longe uma da outra. No entanto, o atual contém também interações auto como aquelas que produzem o deslocamento de massa de a . Essas interações não desaparecem como as partículas se afastam, muito cuidado, deve-se estabelecer relações assintóticas entre o campo e interação do campo Antecessor.
A prescrição correta, desenvolvida por Lehmann, Symanzik e Zimmermann, requer dois estados normalizados e , e uma solução normalizada da equação de Klein–Gordon . Com estas peças é possível afirmar uma relação assintótica correta e útil, mas muito fraca:
- X
implicitamente a suposição se faz de que todas as interações tornam-se insignificantes quando as partículas estão longe uma da outra. No entanto, o atual contém também interações auto como aquelas que produzem o deslocamento de massa de a . Essas interações não desaparecem como as partículas se afastam, muito cuidado, deve-se estabelecer relações assintóticas entre o campo e interação do campo Antecessor.
A prescrição correta, desenvolvida por Lehmann, Symanzik e Zimmermann, requer dois estados normalizados e , e uma solução normalizada da equação de Klein–Gordon . Com estas peças é possível afirmar uma relação assintótica correta e útil, mas muito fraca:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O segundo elemento é de facto independente do tempo que pode ser mostrado pela derivação e lembrando-se que tanto e satisfazem a equação de Klein–Gordon.
Com as mudanças apropriadas os mesmos passos podem ser seguidos para construir um campo Posterior que constrói um estado Posterior. Em particular, a definição do campo Posterior é:
- X
O segundo elemento é de facto independente do tempo que pode ser mostrado pela derivação e lembrando-se que tanto e satisfazem a equação de Klein–Gordon.
Com as mudanças apropriadas os mesmos passos podem ser seguidos para construir um campo Posterior que constrói um estado Posterior. Em particular, a definição do campo Posterior é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a função avançada de Green do operador de Klein-Gordon. A relação assintótica fraca entre campo Posterior e interação do campo é:
- X
onde é a função avançada de Green do operador de Klein-Gordon. A relação assintótica fraca entre campo Posterior e interação do campo é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A formula reduzida para o escalar
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que é ligeiramente mais geral do que um elemento da matriz S. de fato, é o valor esperado do produto ordenado-tempo de um número de campos entre um estado Posterior e um estado Antecessor. O estado Posterior pode conter qualquer coisa a partir do vácuo para um número indefinido de partículas, cujos momentos são resumidos pelo índice . O estado Antecessor contém pelo menos uma partícula de impulso , e, possivelmente, muitos outros, cujos momentos são resumidos pelo índice . Se não existem campos no produto ordenado-tempo, então é, obviamente, um elemento da matriz S. A partícula com impulso pode ser 'extraiu-se' a partir do estado Antecessor pelo utilização de um operador de criação:
- X
que é ligeiramente mais geral do que um elemento da matriz S. de fato, é o valor esperado do produto ordenado-tempo de um número de campos entre um estado Posterior e um estado Antecessor. O estado Posterior pode conter qualquer coisa a partir do vácuo para um número indefinido de partículas, cujos momentos são resumidos pelo índice . O estado Antecessor contém pelo menos uma partícula de impulso , e, possivelmente, muitos outros, cujos momentos são resumidos pelo índice . Se não existem campos no produto ordenado-tempo, então é, obviamente, um elemento da matriz S. A partícula com impulso pode ser 'extraiu-se' a partir do estado Antecessor pelo utilização de um operador de criação:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Com o pressuposto de que nenhuma partícula com momento está presente no estado Posterior, ou seja, estamos ignorando a frente espalhando, podemos escrever:
X
Com o pressuposto de que nenhuma partícula com momento está presente no estado Posterior, ou seja, estamos ignorando a frente espalhando, podemos escrever:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
por causa agindo sobre a esquerda dá zero. Expressando os operadores de construção em termos dos campos Antecessor e Posterior, temos:
X
por causa agindo sobre a esquerda dá zero. Expressando os operadores de construção em termos dos campos Antecessor e Posterior, temos:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Agora podemos usar a condição assintótica a escrever:
X
Agora podemos usar a condição assintótica a escrever:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Então, notamos que o campo pode ser trazido para o produto solicitado em tempo, uma vez que aparece no lado direito quando e sobre a esquerda quando :
X
Então, notamos que o campo pode ser trazido para o produto solicitado em tempo, uma vez que aparece no lado direito quando e sobre a esquerda quando :
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
No seguinte, dependência no produto solicitado em tempo é o que importa, por isso, definir:
- X
No seguinte, dependência no produto solicitado em tempo é o que importa, por isso, definir:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
É fácil mostrar, através da realização explicitamente a integração vez que:
- X
É fácil mostrar, através da realização explicitamente a integração vez que:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
de modo que, por derivação de tempo explícito, temos:
- X
de modo que, por derivação de tempo explícito, temos:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Por sua definição, vemos que é uma solução da equação de Klein-Gordon, o qual pode ser escrito como:
- X
Por sua definição, vemos que é uma solução da equação de Klein-Gordon, o qual pode ser escrito como:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Substituindo na expressão para e integrando por partes, chegamos a:
- X
Substituindo na expressão para e integrando por partes, chegamos a:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Isto é:
X
Isto é:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A partir deste resultado, e seguindo o mesmo caminho a outra partícula extrair a partir do estado Antecessor, que conduz à inserção de um outro campo no produto ordenado-tempo. Uma rotina muito semelhante pode extrair as partículas do estado Posterior, e os dois podem ser repetido para conseguir aspirar tanto a direita como a esquerda do produto ordenado do tempo, levando à fórmula geral:
X
A partir deste resultado, e seguindo o mesmo caminho a outra partícula extrair a partir do estado Antecessor, que conduz à inserção de um outro campo no produto ordenado-tempo. Uma rotina muito semelhante pode extrair as partículas do estado Posterior, e os dois podem ser repetido para conseguir aspirar tanto a direita como a esquerda do produto ordenado do tempo, levando à fórmula geral:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Qual é a fórmula de redução LSZ de Klein-Gordon para escalares. Ele ganha um aspecto muito mais bonito se for escrito usando a transformada de Fourier para função de correlação:
- X
Qual é a fórmula de redução LSZ de Klein-Gordon para escalares. Ele ganha um aspecto muito mais bonito se for escrito usando a transformada de Fourier para função de correlação:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Usando a transformada inversa para substituir na fórmula de redução LSZ, com algum esforço, o seguinte resultado pode ser obtido:
X
Usando a transformada inversa para substituir na fórmula de redução LSZ, com algum esforço, o seguinte resultado pode ser obtido:
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Deixando de lado fatores de normalização, esta fórmula afirma que os elementos da matriz S são os resíduos dos pólos que surgem da transformada de Fourier. É a fórmula de LSZ, onde é a constante de renormalização do campo.
Deixando de lado fatores de normalização, esta fórmula afirma que os elementos da matriz S são os resíduos dos pólos que surgem da transformada de Fourier. É a fórmula de LSZ, onde é a constante de renormalização do campo.
Na física, teoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.
A teoria de campo é definida pela ação local:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a métrica do espaço bidimensional em que a teoria de campo é formulada, é o escalar Ricci de tal espaço, e é um acoplamento constante real. O campo é consequentemente chamado de campo Liouville.
A equação de movimento associado a esta ação é ::
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.
- [1]
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Na física, os Fantasmas de Faddeev-Popov (também chamado de campos fantasmas) são campos adicionais os quais são introduzidos em teorias quânticas de campos de gauge para manter a consistência da integração funcional. Eles têm esse nome para homenagear Ludvig Faddeev e Victor Popov.[1][2]
Tais campos são escalares que obedecem as estatísticas de Fermi. De acordo com o teorema spin-estatística,[3] os fantasmas de Faddeev-Popovs violariam a causalidade.[4]
Campos fantasmas Lagrange
O Lagrange para os campos de fantasmas nas teorias de Yang-Mills (onde é um índice na representação adjunta do grupo de calibre) é dado por
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O primeiro termo é um termo cinético como para campos escalares regulares complexos, e o segundo termo descreve a interação com os campos de gauge. Note que nas teorias abelianas de gauge (como na eletrodinâmica quântica) os fantasmas não têm qualquer efeito desde que e, conseqüentemente, as partículas fantasmas não interagem com os campos de gauge.
Comentários
Postar um comentário